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Abstract

I define the price of a tax on an asset to be the price of the government’s contingent
claim on future cash flows, and I calculate it using risk-neutral pricing techniques.
Levying an up-front lump-sum tax in this amount in lieu of an ex-post tax is equivalent
to simply levying the ex-post tax, because the taxpayer and the government can invest
in complementary self-financing dynamic replicating portfolios that allow markets to
clear and preserve general equilibrium by reestablishing the same cash flows that
would have occurred under the ex-post tax.

The price of a tax is a practical tool for quantifying the burdens of common
non-linear and complex taxes. As an application, I analyze a tax that is linear for
gains but disallows losses. With both numerical examples and theoretical results, I
quantify how such a convex tax burdens risk-taking, particularly in the case of levered
instruments like options. I also address how such a sub-additive tax burdens division
of asset ownership using put-call parity or types of debt financing.
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1 Introduction

It is well understood in the law and public finance literatures that a constant-rate
tax levied proportionately on risky investment income is equivalent to a tax on the
risk-free return to initial investment wealth.1 What is less well understood is how
precisely this result changes when the tax is not linear, which includes taxes with such
commonly observed features as loss disallowances and graduated rates. This paper
addresses the gap in understanding by extending the general equilibrium approach
developed by Kaplow (1991, 1994) to a continuous-time setting and using asset pricing
techniques for contingent claims in order to analyze non-linear methods of taxation.

One can think of a tax on future asset returns as a contingent claim held by the
government. A taxpayer who ostensibly purchases the asset does not have the right
to all future cash flows from it, but rather just to the residual amounts after the
government’s contingent claims are paid. The taxpayer therefore has a contingent
claim as well, and this claim is complementary to that of the government, with the
two claims together accounting for all future cash flows from the asset. I define the
“price of a tax” to be the up-front price of the government’s contingent claim, i.e., the
amount the government would need to pay up-front in order to purchase its contingent
claim.

To determine the price of a tax, it is useful to import tools from the financial
economic theory of asset pricing. Specifically, assume that the price process for the
risky asset is sufficiently well behaved that the government’s contingent tax claim
can be replicated by a self-financing dynamic portfolio of positions in the risky asset
and a risk-free asset.2 This will be the case case, for example, if the risky asset price
follows a log-normal process.3 The replicating portfolio has an initial cost, equal to
the net cost of the initial risky and risk-free asset positions in the portfolio, and this
is exactly the price of the contingent claim, i.e., the price of the tax.

If the government collects the price of the tax determined in this way, then it

1Domar and Musgrave (1944, 1945) lay out the result in its original form, Kaplow (1991, 1994)
extends it to a general equilibrium setting, and Weisbach (2004a) extends this general equilibrium
approach to the case of linear taxes levied at different rates on different assets. Further discussion
and development in the legal literature can be found, for example, in Warren (1996) and Weisbach
(2004b). There has also been critical treatment in the literature. See, for example, Avi-Yonah (2004)
for a discussion of limitations on the result arising from borrowing costs and transaction costs.

2In order for this dynamic replication to work, the cash flows for the contingent claim must be
deterministic at each point in time, conditional upon a particular state of the world for the asset
value. However, the taxpayer may have discretion to choose, for example, the timing of tax cash
payments and thereby affect the nature of the government’s contingent claim. This taxpayer discre-
tion will not affect the replicability of the claim, as long as the taxpayer’s choices are deterministic,
conditional upon a particular state of the world at a particular time. Under this assumption, the
taxpayer’s conditionally deterministic discretion can simply be incorporated into the conditionally
deterministic rules governing the definition of the government’s contingent claim.

3An example in which the desired type of dynamic replication would not be possible is a price
process with stochastic volatility. In such a situation, dynamic replication would necessarily involve
further instruments relating to the more complex volatility.
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can manage a dynamically evolving self-financing investment portfolio to obtain all
the cash flows it would have received under the ex post tax. The taxpayer is left
with the initial amount he would have invested in the asset, reduced by the up-front
tax collected by the government. This remaining amount is exactly the price of the
replicating portfolio for the taxpayer’s complementary contingent claim, because the
two complementary contingent claims combined reflect all cash flows from the asset
and thus the sum of their initial prices is simply the initial asset price. As a result,
the government and the taxpayer can start with the price of the tax and the residual
amount, respectively, and manage dynamic self-financing portfolios that will replicate
the cash flows both parties would have had under the ex-post tax.4 By doing this,
the parties will ensure that markets clear, because their positions are complementary,
and also that a state of general equilibrium will be preserved, assuming there was an
equilibrium under the ex-post tax.

In a sense, all of this is simply a matter of relabeling, and nothing has really
changed. The situation under the ex post tax is precisely replicated under the alter-
native up-front tax. The point of the exercise, however, is to determine the price of
the tax. This value indicates how burdensome the tax on the asset is to the taxpayer,
and it provides a present-value measurement tool that can be used to compare the
relative burdens of taxes on different assets. It is also useful for government budgeting
purposes because it represents the present value of the future tax collection rights.

The determination of the price of a tax can be complex, but this is necessary
in light of the complex non-linear taxes applicable to investment returns. Currently,
long-term capital gains are subject to graduated rates of 0%, 15%, or 20%, depending
upon taxpayer income level,5 and there is a 3.8% surtax on net investment income
for taxpayers with sufficiently high incomes.6 There is also a yearly limitation on
net capital losses of $3,000 in per year for individuals.7 In addition, investments
in traditional IRAs are subject to taxation under progressive ordinary income tax
brackets on withdrawal. Because of such non-linearities in the tax code, it is crucial
to have adequate tools for understanding the burdens being imposed. The price of a
tax is precisely the right type of tool for this job. It is theoretically grounded and also
is extremely practical and effective in dealing with the complexities of the current tax
rules.

My methodology creates a bridge between the pricing of contingent claims and the
pricing of taxes in such a way that the many known theoretical and practical results
regarding the former give rise directly to corresponding results for latter. Many of

4No further tax by the government should be levied on the taxpayer’s dynamic replicating port-
folio or transactions therein because the up-front payment amount represents full satisfaction of the
taxpayer’s obligations to the government with respect to the asset. The cash flows to the taxpayer
from his replicating portfolio accordingly leave the taxpayer in precisely the after-tax cash flow
position he would have been in under the ex-post tax.

5IRC § 1(h).
6IRC § 1411.
7IRC § 1211.
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the most basic results for the pricing of contingent claims assume that markets are
sufficiently complete that the claims may be dynamically replicated with portfolios
of available assets, and in this paper I focus on this situation. I also make the
further assumption that transaction costs are negligible. It is possible to relax these
assumptions to significant degrees to obtain more general results, either finding exact
prices or at least informative upper and lower estimates for prices.

In prior tax policy scholarship, the Domar-Musgrave result has been used as a
strong premise for arguments that returns to capital should not be taxed, since taxa-
tion of such returns under an ideal linear tax is largely illusory and only the risk-free
return to capital is actually effectively taxed. This paper takes a different approach
by starting with the idea that the tax system has certain non-linear aspects, and that
it is not feasible to eliminate these features completely. The methodology I develop
provides a way to quantify the precise nature of the burdens imposed by such an
imperfect system on taxpayers with different portfolios of assets, and this in turn
informs tax policy by identifying what feasible changes are optimal to pursue. Such
changes may include, for example, modifications in rates on certain assets or broader
consideration of overall portfolio positions when determining tax due. This type of
change may be second-best to a complete elimination of the tax on returns to capital,
but it can still provide significant improvements in efficiency and substantial mitiga-
tion of some of the undesirable or unintended burdens imposed by non-linearity. The
goal of my methodology is thus the provision of a robust set of tools for assessing
critically the nature of an imperfect tax system and for guiding the development of
incremental agendas for reform.

The price of a tax as I have discussed it thus far is an entirely general concept
and can be applied to taxes that are due to various extents at multiple times in the
future. In order to keep the analysis that follows more manageable, I generally focus
on the special situation in which the ex post tax is only levied at a fixed time in
the future. Similarly, I assume that after-tax cash flows to the taxpayer under the
ex post tax also only occur at that same fixed time. These simplifying assumptions
serve to make the details of the analysis easier, but they still provide a rich enough
environment for the key ideas to be laid out.

To make the general theory more concrete, I describe in Section 3 the special
case in which asset prices evolve over a finite number of periods and follow a simple
binomial process. This model extends directly to an asset that follows a lognormal
price process in continuous time.

As a particular example of a non-linear tax, I consider a tax that is linear for
gains but does not allow offsets for losses. I denote this tax by TNL. It is a conve-
nient example for study because it is only slightly more complex than a linear tax,
and because many real-world taxes do in fact deny offsets for some or all losses. To
analyze the TNL tax, I compute the price of a tax numerically and illustrate results
graphically for various investment choices based on historical asset data. I also gen-
eralize beyond numerical results by proving theoretical propositions that confirm the
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properties shown by the calculations. Whenever possible, I prove these propositions
not just for the TNL tax, but also for broad classes of taxes that have certain similar
properties that drive the results.

I find that convex taxes, such as the TNL tax, generally burden the risk in risky
returns, but not the expected level of these returns. As a result, such taxes encourage
portfolio diversification targeted at risk minimization without regard to expected
returns. This produces a distortion in investment allocation decisions. In addition,
if a taxpayer owns put or call options on assets instead of the assets themselves,
the TNL tax can impose a particularly significant burden, which is larger for more
out-of-the-money, and hence more levered, options.

I further find that subadditive taxes, such as the TNL tax, penalize synthetic
division of risky asset ownership across taxpayers. In other words, a lower aggregate
burden is imposed on two investors who hold direct interests in a risky asset than
would be imposed if the two people kept the same aggregate financial stake but
arranged their affairs so that one would have a capped return (the debt claimant)
and the other would have the upside beyond that return (the equity claimant).8

In terms of tax policy guidance, my results give preliminary support to the ideas
that it may be desirable to have lower tax rates for taxpayers with relatively riskier
portfolios and also to mitigate the aggregate tax burden on assets with debt-financed
or synthetically divided ownership.

The remainder of the paper proceeds as follows. In Section 2, I provide a survey
of some relevant related scholarship. In Section 3, I define notation and terminology
and describe the finite binomial model and its continuous extension. In Section 4,
I recover the classic Domar-Musgrave result as a special case of the general theory.
In Section 5, I analyze the TNL tax in detail. In Section 6, I address ways in which
my methodology can be extended, as well as some limitations. Finally, Section 7
concludes.

2 Related Literature

The fact that a non-linear income tax may affect risky investment is not new. It is
well-known that a tax disallowing losses, for example, preferentially favors gains over
losses and generally distorts taxpayer behavior from what it would be if there were
a linear tax, or no tax at all. Moreover, it is understood that any non-linearity in
a tax system, such as a graduated rate brackets, can impose a significant burden on
risk-taking.

Stiglitz (1969, 1972) is pioneering theoretical work demonstrating the burden of
non-linear taxes on risk-taking. Atkinson and Stiglitz (1980) and Sandmo (1985)

8For a tax system that applies different rates and rules to debt and equity, debt financing is
sometimes penalized and sometimes preferred. Which occurs depends on the specific nature of the
asset, as well as the applicable rates and rules. This is discussed further in Section 5.4.
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provide excellent reviews and analyses of this line of work, and Campisano and Ro-
mano (1981) apply this approach in the in their proposal for current recoupment
of tax losses. The later work of Kaplow (1991, 1994) introduces a powerful general
equilibrium methodology that does not depend upon expected utility maximization
and innovates by introducing government investment portfolio adjustments as a tool
for preserving equivalence between tax regimes. Weisbach (2004b) extends Kaplow’s
methods to the case of a linear tax imposed at different rates on different assets. In
addition, the works of Schenk (2000) and Zelenak (2006) recognize that the usual
arguments about the effect of linear taxes do not apply to non-linear taxes. Beyond
the theoretical results and discussion, there is also an empirical literature, and the
work of Gentry and Hubbard (2005) shows striking empirical evidence that entry into
entrepreneurial activity by taxpayers is sensitive to convexity in the progressive rate
schedule, with such convexity serving to discourage risk taking.

This paper moves beyond the existing literature by applying the general equilib-
rium techniques developed by Kaplow (1991, 1994) to the case of non-linear taxes.
This innovation is accomplished by extending the existing model to allow for multiple
periods and even continuous time trading. A further key contribution of this paper
is the introduction of techniques from financial economics to evaluate the price price
of the government’s contingent tax claims on risky assets. This is what I term the
price of a tax, and it has the property that an up-front lump-sum tax in its amount
would be an equivalent alternative to the relevant non-linear tax. The price of a tax
can be compared across investment strategies and quantifies the degree to which a
tax burdens risk-taking of different types.

The results of this paper are also related to work in the corporate finance literature,
where it has been long recognized that understanding of taxes on corporate income
can be informed by the option pricing theory of financial economics. Green and
Talmor (1985) and Majd and Myers (1986) present important research in this regard.
The current paper is distinct from the corporate finance literature in that it employs
the general equilibrium approach developed by Kaplow (1991, 1994) to analyze taxes
in a context that takes into account fully the behavior of all parties, including the
government. In addition, the current paper focusses on the question of the burden
of a tax on individual investors instead of corporate investors. Nonetheless, there is
significant connection between the corporate finance literature and the methodology
set forth in this paper, and it is hoped that the two sets of literature may be able to
benefit from and inform each other in the future.

3 Model with All Cash Flows at a Fixed Time

I extend the general equilibrium approach pioneered by Kaplow (1991, 1994) in two
ways. First, I permit the tax levied to be non-linear. Second, I allow trading and
rebalancing of investment portfolios, but no consumption of investment amounts, at
points in between the start time, at which initial investments are made, and the end
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time, at which taxes are paid and after-tax investments are consumed. The idea is to
import the ideas from asset pricing theory into this generalized model to determine
the price for the value of the government-held contingent claim to collect taxes. The
price of this claim truly represents the “price” of the tax, because imposing an up-front
lump-sum tax in this amount, along with appropriate dynamic investment portfolio
modifications, preserves a state of general equilibrium.

I focus most of the description on the specialized case of a “binomial” model that
only allows a discrete number of asset prices at a discrete number of times. This
treatment closely follows the ideas laid out in Cox et al. (1979), and it provides a
rich framework that is relatively straightforward and intuitive. After discussing the
binomial approach in detail, I explain generally what happens in the limit as the
discrete model becomes continuous and how the price of a contingent claim may be
thought of as the present value of an expectation taken with respect to an appropriate
distribution.

Let t0 = 0 and t1 be the notation for the start and end times for investment,
respectively. Also, let n− 1 be the total number of evenly spaced intermediate times
at which trading is allowed, and write these times as t k

n
=
(
k
n

)
t1. Investors are given

an endowment of wealth that they must invest at time t0, and they must pay tax
on their investment earnings according to a specified rule at time t1. All after-tax
wealth is consumed at time t1, but no consumption occurs at intermediate points. The
government may also act as an investor, but it is of course not subject to taxation.
For the moment, all investments must be made in either a risky asset A or a riskless
asset B. The return on A is uncertain, but B provides a guaranteed rate of return
r, expressed on an annualized basis with continuous compounding. I write At and Bt

to denote the price at time t for one unit of the assets A and B, respectively.
I start with the case n = 1, and I make the simplifying “binomial” assumption

that At1 may take on only two possible values, namely uA0 and dA0, where u > d.
In equilibrium, a taxable investor makes certain investment choices and is subject to
tax in each of the two possible states of the world, corresponding to u and d. I write
these two tax amounts as Tu and Td. Because there are only two possible amounts
of tax, and because the asset A takes on a different value in each of these states, it
is possible to replicate the tax due to the government with the pre-tax amount that
would come about if one started with a particular portfolio of assets. I determine the
appropriate portfolio weights by solving the relevant system of two linear equations
in two unknowns, and I find that the form of the portfolio is

P = ∆A + sB, with ∆ =
Tu − Td

(u− d)A0

and s =
uTd − dTu

(u− d)Bt1

. (1)

I write Pt for the value of this portfolio at time t. If the government levies an amount
P0 of tax on the investor at the start time instead of levying any tax at the end time,
and if the government invests this amount in the portfolio P , then the government
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will have the same cash flow at the end time as it would have had under the original
tax. Also, if the investor, who now has P0 less at the outset, invests in the portfolio
−P in addition to his otherwise planned investments, then his final cash flow will also
be the same as it would have been under the original tax, because now no final tax is
levied and the amount by which the final value of the −P portfolio reduces his final
wealth is exactly the same amount as the original tax did. Thus, replacing the original
tax with this up-front tax and appropriate portfolio modifications preserves a state of
general equilibrium. Consumption cash flows for all parties remain unchanged, and
the offsetting adjustments of the taxpayer and the government insure that markets
clear.

The analysis so far has been very specialized in that it is limited to the case
n = 1 and permits only two possible values for At1 . Nevertheless, it demonstrates
the powerful idea from asset pricing theory that it may be possible to replicate a
contingent claim using a portfolio of the assets underlying the claim. In the simple
case just considered, this is not very surprising, since the number of possible values for
the government’s contingent tax claim is the same as the number of possible values
for the risky asset, and thus replication is merely a matter of solving a system of
equations. Remarkably, however, the work of Cox et al. (1979) shows that is possible
to extend the result to larger values of n and ultimately to pass to a continuous limit
and generalize to a wide class of asset behaviors.

In order to handle the case n > 1, it is necessary to define what values of A are
permitted at each point in time. The idea is to require that for a given value of A at a
particular time, there are only two possible values of A at the next point in time, and
these are multiplications of the original value by either u or d, where u > d. Thus,
at time t k

n
, for 0 ≤ k ≤ n, there are k + 1 possible values for A, namely ujdk−jA0,

for 0 ≤ j ≤ k. Because A is the only uncertain quantity in this model, the values of
A at the various times identify the possible “states of the world,” and the permitted
values for A make it clear that there are k+1 states of the world at time t k

n
. The tax

due on the investment strategy of a particular taxpayer is completely specified by the
amount of the tax in each of the n + 1 possible final states of the world, and I write
the tax payable in these states as Tn,k, for 0 ≤ k ≤ n. I claim that this specification
of n+1 final tax values can be identified with a single value at time 0 , and that this
number is the price of the tax. To see this, note that at each of the n states of the
world at time tn−1

n
, there are only two possible values for the tax in the next period.

Thus, just as in the n = 1 case described above, there is a portfolio that can be
purchased in a particular state of the world at time tn−1

n
that will produce the same

pre-tax values as the amounts of the tax in the two possible future states. Thus, the
n + 1 values for the tax at time t1 give rise to n replicating portfolios at time tn−1

n
,

and I write the prices of these replicating portfolios as Tn−1,k, for 0 ≤ k ≤ n − 1. It
is possible to continue this process repeatedly backward through time, with the next
step being the calculation of n−1 prices labeled Tn−2,k, for 0 ≤ k ≤ n−2, and so on,
until a final value T0 is obtained. At each time j, for 0 ≤ j ≤ n, and for each state
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of the world k at that time, for 0 ≤ k ≤ j, there is a particular replicating portfolio
that the foregoing procedure identified, and it has value Tj,k.

If the government levies an up-front tax in the amount T0, and then invests in
replicating portfolios corresponding to each successive time and each state of the world
that comes about, then the final result of this investment strategy is a value equal
to the amounts of the original tax in each possible final state of the world, namely,
Tn,k, for 0 ≤ k ≤ n. Such successive investment is possible because the value of each
portfolio at the time immediately after which it is purchased is exactly equal to the
value of the next portfolio, by construction. If the government adopts this strategy
in place of levying the original tax, then the taxpayer has T0 less at time t0, but
he may adjust his investments in ways that exactly offset the government’s portfolio
strategy. Thus, as in the n = 1 case, replacing the original tax with this up-front
tax and appropriate portfolio modifications preserves a state of general equilibrium,
because consumption cash flows for all parties remain unchanged, and the offsetting
adjustments of the taxpayer and the government insure that markets clear.

The portfolio adjustments required to transform a final tax into an up-front lump-
sum looks like an elaborate game of what Kaplow (1994) termed “musical shares,”
and to a certain extent it is. The game pays significant dividends, however, inasmuch
as it translates a complicated tax into a present value form that is amenable to ready
comparison with the similarly calculated present values of other taxes. This “price”
of the tax thus provides a common yardstick for evaluating the burdens imposed by
any manner of tax.

One surprising feature of the binomial model I have presented so far is that there
is no reference at all to the probability that the value of A moves up or down at any
point. In fact, the results hold no matter what probability is used, and there was
no need to make any particular choice. When pricing options in practice, a common
assumption is that the probability that the price of A moves up, instead of down, at
any discrete time step is given by a number q that is the same throughout the entire
model. Cox et al. (1979) show that if

u = eσ
√

t1/n, d = 1/u, and q =
1

2
+

1

2

(µ

σ

)√

t1/n, (2)

then, as n → ∞, the distribution of possible values for A tends toward a lognor-
mal distribution with mean µ and standard deviation σ for the underlying normal
distribution. This is the type of distribution assumed by Black and Scholes (1973)
and is the assumption of the well-known Black-Scholes formula. In the continuous
limit, with the probability and parameter assumptions, of (2), the binomial model
used for option pricing leads to the result of Black and Scholes. Different choices for
the parameters and probabilities in the binomial model can correspond to assets with
non-lognormal behavior. For example, Cox et al. (1979) show how to incorporate
jump diffusion processes as well.
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In the continuous limit, the price of a contingent claim can be thought of as the
initial value needed to fund a strategy of continuous dynamic portfolio investment
in underlying assets, with the property that the chosen portfolio at any point in
time precisely replicates the value of the contingent claim over an infinitesimal time
interval. This powerful and innovative approach originated with Merton (1973, 1976),
and he showed that this requirement leads to a stochastic differential equation which
may be solved to determine the precise value of the claim at all points in time. The
continuous-time approach works with my model in the same way that the discrete
binomial model does. If the government levies an up-front tax equal to the price of
its contingent tax claim, foregoes the collection of the original tax, and makes the
appropriate continuous and dynamic investment choices, it can replicate the final
cash flows it had under the original tax. The taxpayer has an initial value that is less
by exactly the amount of the claim, and making portfolio adjustments that exactly
offset the government’s choices, he also replicates the final cash flows he had under
the original tax. General equilibrium is again preserved, because all consumption
cash flows are the unchanged, and markets clear at all times.

An additional way to view the value of a contingent claim is as the present value
of the expected cash flows of the claim, where the expectation is taken with respect
to a suitable probability measure for the distribution of asset values. Harrison and
Kreps (1979) explain how this method for pricing claims encompasses those discussed
above and is also based upon the same type of replicating portfolio argument. The
probability measure most commonly used is the one that assumes all assets have
an expected return equal to that of the riskless asset at all points in time. This is
appropriate if there are risk-neutral agents in the economy that are either tax exempt
or taxed continuously on a mark-to-market basis, because such agents will transact in
such a way as to drive all expected returns to the same value. I will assume that my
model includes such agents, so that this measure is correct, and with this choice of
measure, discounting at the risk-free rate is appropriate. From this perspective, the
price of a tax T that is a function of the difference between a stochastic final pre-tax
investment wealth level, Wt1 , and an initial fixed wealth level, W0, can be written

P (A, T ) = e−rt1E [T (Wt1 −W0)] . (3)

The expectation E is taken with respect to the risk-neutral probability measure for
final asset values, and r is the risk-fee rate of return, defined to be the rate of return
on the riskless asset B, and assumed to be constant over time.

The expression for the price of a tax in (3) is very general, and it is the formulation
that I will use throughout most of the remainder of this paper. It encompasses the
possibility of multiple risky assets, as well as assets that follow distributions that may
not be lognormal. For my purposes, it is not important to define precise boundaries
for the scope of asset types that I consider, but I note that the formula in (3) holds
as long as markets are sufficiently complete to allow the relevant dynamic replication
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portfolios to be formed at all points in time. Throughout the remainder of this paper,
I assume that this type of market completeness holds. In Section 6, I discuss briefly
extensions to situations of incomplete markets.

The price of a tax that I have defined truly indicates the burden of a tax inasmuch
as it tells the amount of an equivalent up-front tax that can be levied in lieu of the
original tax while still preserving general equilibrium. One caveat that is important
to note, however, is that my methodology does not directly say anything about what
happens if general equilibrium is altered, as may happen if tax rates or rules are
changed. For example, if the tax rate applicable to a certain type of asset were
increased, a new state of general equilibrium would occur, with taxpayers altering
investment decisions and prices changing, both for the asset subject to the rate change
and perhaps for other assets as well. In this new state of general equilibrium, a tax
price for each investor could be computed, but it would depend not only upon the
change in tax rules in isolation, but also on all of the concomitant changes to the
rest of the economy. Of course it is possible to assume that the change in tax rules
does not affect the state of general equilibrium, and then to analyze the effect of
changes in tax rules on tax prices in the resulting partial equilibrium setting, and this
approach may still provide valuable information notwithstanding the departure from
the general equilibrium setting.

4 Revisiting the Linear Tax

The concept of the price of a tax defined in Section 3 can be applied to a linear tax
to recover the well-known result of Domar and Musgrave (1944, 1945) and Kaplow
(1991, 1994) that such a tax is equivalent to a tax on the risk-free rate of return
to initial investment value. Under a linear tax, the government collects a constant
fraction, τ , of returns to investment value. Thus, the payment from an individual to
the government on an amount of income x is

TL (x) = τx. (4)

It is possible for this payment to be negative, if x < 0, and in this case the government
allows an offset of losses sustained.

Suppose that a taxpayer invests in a risky asset, A, for a period of length t1. If At

is the value of the asset at time t, then the amount the government is paid in taxes
at time t1 is equal to τ (At1 − A0), including the possibility that this amount might
be negative. The burden of the TL tax on this investment is the price

P (A, TL) = τe−rt1E [At1 − A0] = τe−rt1
(
A0e

rt1 −A0

)
= τA0

(
1− e−rt1

)
, (5)

where the expectation is taken over the risk-neutral distribution of values for At1 , and
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so E [At1 ] = A0e
rt1 . This follows directly from the definition for the price of a tax in

(3).
As an alternative to using the definition in (3) directly, the price of the TL tax can

be calculated by considering the prices of forward contracts and bonds. A forward is
a contract that requires the purchase at time t1 of an asset, A, for a specified amount.
The purchase amount is called the forward price, and it is the number that causes
the forward contract to have value zero at time t = 0. The forward price is thus given
by Ft1(A) = ert1A0, since this is the expected value of At1 under the risk-neutral
distribution at time t1, and so a contract that requires purchase of A for this price at
time t1 must have value zero at time zero. The claim of the government imposing the
TL tax on an investment in A can thus be seen to have a payoff identical to τ times the
payoff of a forward contract on A at time t1, plus τ times the gain on an investment
of an initial amount A0 in the riskless asset. The forward contract portion represents
the proportional payment on the expected income over the risk-free return, which is
zero under the risk-neutral expectation. The riskless investment portion represents
the return on the risk-free return. This division of the TL payoff into a forward and
a riskless bond can be expressed symbolically as

TL (At −A0) = τ (At − A0) = τ
(
At − A0e

rt1
)

︸ ︷︷ ︸

Forward Payoff

+τ
(
A0e

rt1 − A0

)

︸ ︷︷ ︸

Bond Payoff

. (6)

The expected forward payoff is zero, since E [At] = A0e
rt1 under the risk-neutral

expectation, and the expected bond payoff is τA0 (e
rt1 − 1). The sum of the present

values of these two terms is τA0e
−rt1 (ert1 − 1), which is of course the same as the

price of the TL tax obtained in (5).
It is informative to consider the details of the investment adjustments the gov-

ernment and a taxpayer would need to make to preserve general equilibrium if an
up-front lump-sum tax in the amount of P (A, TL) were imposed instead of the TL

tax. If the government invested the entire lump-sum amount in the riskless asset and
also bought τ units of a zero-cost forward contract, it would obtain the same final
payoff at time t1 as it would under the TL tax. If the taxpayer took the offsetting
positions, borrowing the entire lump-sum amount at the risk-free rate and also selling
τ units of a zero-cost forward contract, he would also obtain the same final payoff at
time t1 as he would under the TL tax. If the parties preferred to transact in the asset
directly, rather than in forwards, they could use the fact that a zero-cost forward
contract to purchase an asset has exactly the same payoff as a long position in the
asset, funded by riskless borrowing. Thus the τ units of long and short forward posi-
tions taken by the government and the taxpayer could be replaced by long and short
positions in the asset, with the long position financed by borrowing at the risk-free
rate and the proceeds from the sort position invested in the riskless asset.
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5 Application To a Tax with No Loss Offsets

I next turn to an application of the general theory of Section 3 to a non-linear tax. I
choose the example of a non-linear tax that is proportionate for gains but does not
allow loss offsets. Thus, for an amount of income x, the tax levied is

TNL(x) = τ max(0, x). (7)

This tax is of particular interest because it is not much more complicated than a
linear tax, and yet it significantly burdens assets in ways that linear taxes do not. In
addition, similar taxes are present in the current U.S. tax system, since net capital
losses are disallowed or limited, while net capital gains are often taxed at a linear
rate.9 Study of the TNL tax thus provides insight into the nature and magnitude of
the burdens actually imposed by a non-linearity in the U.S. tax on capital gains.

The analysis of this section involves both concrete numerical examples and gen-
eral theoretical propositions. For the numerical calculations, I make assumptions
about underlying parameter values that are consistent with typical historical expe-
rience, and I display results graphically. The theoretical propositions generalize the
numerical examples to statements that are independent of parameter values and other
assumptions. The proofs of all propositions appear in the appendix.

5.1 Burden on a Single Risky Asset

To begin understanding the price of the TNL tax, it is useful first to observe that the
tax is convex, meaning that, for any two incomes, x and y, and for any weighting
0 ≤ α ≤ 1, the following inequality holds:

Definition of Convexity: TNL(αx+ (1− α)y) ≤ αTNL(x) + (1− α)TNL(y). (8)

The proof that TNL is in fact convex appears in Appendix A.1, and the fact that it
is convex means that it burdens risk-taking in a sense made precise by the following
proposition.

Proposition 1. The price of a convex tax T with respect to an investment in a risky

asset, A, is at least as great as the price of T with respect to an investment in the

riskless asset, B. If the inequality defining the convexity of T is strict, then the price

for A is strictly greater than the price for B. Also, if the inequality T satisfies is

9An example of a loss limitation is the annual limit of $3,000 under IRC §1211 on net capital
losses for individuals. An example of a flat tax rate on gains is the 15% rate of IRC §1 that is
generally applicable to long-term capital gains, other than those in certain categories, for taxpayers
above a specified ordinary income tax bracket.
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reversed, then T is said to be concave, and the price for A is no more than the price

for B.

To describe the burden of TNL on risk-taking in more detail, it is useful to write
the price of this tax in terms of the value of a financial option. Specifically, if A is a
risky asset that will be held until time t1 and r is the annual risk-free rate of return,
then the burden of TNL on this investment is

P (A, TNL) = e−rt1E [TNL (At1 − A0)]

= τe−rt1E [max (0, At1 −A0)] .

The expectation in this equation is taken with respect to the risk-neutral distribution
for At1 , and the present value of this expectation is exactly equal to the price of a
European call option on A with strike A0 and expiration at time t1. The price of
this call may be denoted as Ct1(A), and then the burden of the tax may be written

P (A, TNL) = τCt1(A)
The theory of option pricing may be applied directly to shed light on the nature

of P (A, TNL). In particular, if the price of A has a log-normal distribution with
underlying volatility σ, then the well-known formula of Black and Scholes (1973)
provides a value for the call option Ct1(A), and the price of the tax is

P (A, TNL) = τA0

(
N (d)−N

(
d− σ

√
t1
)
e−rt1

)
, (9)

where d =
(
σ
2
+ r

σ

)√
t1, where N is the cumulative distribution function for the

standard normal distribution, so that N(x) = 1√
2π

∫ x

−∞ e−x/2 dx.

Proposition 2. If A has a log-normal distribution with underlying volatility σ, then
the burden of the TNL tax on an investment in A of length t1 can be expressed as

P (A, TNL) = τA0

(
1√
2π

)
(
σ
√
t1
)
+ E,

where |E| ≤ 5τA0σ
2t1, provided r ≤ σ2 and σ2t1 ≤ 1. Thus, the approximation

P (A, TNL) = τA0

(
1
2π

) (
σ
√
t1
)
is roughly accurate for small values of σ2t1.

Proposition 2 shows that, when σ2t1 is not too large, the burden of the TNL tax
on a risky investment with log-normal returns is approximately proportionate to the
risk, as measured by volatility. Thus, the TNL tax can be seen to burden risk-taking
in a very direct way. Figure 1 illustrates this burden for varying levels of volatility, σ,
and for varying times of investment, t1, with the underlying calculations carried out
using the formula in (9). It is apparent from Figure 1(a) that for the fixed investment
horizon t1 = 1, the burden grows proportionately with volatility. Figure 1(b) shows
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that higher volatilities continue to have a higher tax burden as t1 grows, but that the
burden for any fixed volatility increases in time.

The parameter assumptions for the calculations in Figure 1 are based on historic
values computed from data available at the website of Professor French.10 These data
underlie many of the numeric calculations in this section and are summarized in Table
1.

Parameter Value Description
r 3.6% Risk-free rate, computed as 12 times the average of the

monthly risk-free returns specified in Professor French’s
data for the period from July 1926 to May 2011

σmkt 18.9% Volatility, computed as
√
12 times the standard deviation

of monthly market returns specified in Professor French’s
data for the period from July 1926 to May 2011

µmkt − r 7.5% Market excess return, computed as 12 times the average of
the monthly market returns in excess of the risk-free rate
in Professor French’s data for the period from July 1926
to May 2011

Smkt =
µmkt−r
σmkt

0.40 Sharpe ratio, computed as the ratio of the historic µmkt−r
value to the historic σmkt value

Table 1: Historic quantities used as parameters for certain numerical calculations

Figure 1(b) suggests that the burden of the TNL tax increases monotonically with
the length of the investment. The next proposition provides a precise formulation of
the size of the burden for large values of t1. Although the proposition shows that the
burden on any asset ultimately tends to the limit τA0 as t1 → ∞, it is clear from
Figure 1(b) that this limit is not reached, under reasonable parameter assumptions,
for investment periods of up to 30 years.

Proposition 3. If At1 has a log-normal distribution with underlying volatility σ, then
the burden of TNL on an investment in A of length t1 satisfies

τA0

(
1−N

(
d− σ

√
t1
) (

1 + e−rt1
))

≤ P (A, TNL) ≤ τA0,

and the left-hand side tends to the limit τA0 as t1 → ∞. In addition, the burden of

TNL on an investment in the riskless asset B satisfies

τB0

(
1− e−rt1

)
≤ P (B, TNL) ≤ τB0.

Thus the percentage burden on A and B tends toward the same limit, τ , as t1 → ∞.

10The data were accessed on August 2, 2011 from Professor French’s data library on his faculty
web page at http://mba.tuck.dartmouth.edu.
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(a) Varying σ Values (b) Varying t1 Values

Figure 1: The figure on the left shows how the burden of the TNL tax depends upon
the volatility σ in the case of an investment of t1 = 1 years in a risky asset with log-
normally distributed values. The risk-free rate is assumed to be the historic average
of r = 3.6%, and the horizontal dotted line shows the burden of the TNL tax on the
riskless asset for comparison. The figure on the right shows how the burden of the
TNL tax changes with the length of investment, t1, which varies along the horizontal
asset. The risky asset is again log-normally distributed, and the assumed volatility is
the historic market volatility σ = 18.9%. The upper dashed curve indicates how the
picture would change if the volatility were higher, with σ = 40%, and the lower dotted
curve indicates the burden on the riskless asset for comparison. For both graphs, the
assumed tax rate on gains is τ = 35%.

Proposition 2 also shows that the burden of the TNL tax depends upon asset
return volatility, but not on the market expectation for asset return level. This is
a direct consequence of the fact that the formula for the price of a tax involves
an expectation with respect to risk-neutral outcomes, rather than market expected
outcomes. Nevertheless, if there is a functional relationship between volatility and
market expectations for asset return level, the TNL tax places an indirect burden on
asset returns by virtue of this relationship. For example, if a one-factor model for
asset returns holds, such as is the case with the Capital Asset Pricing Model (CAPM),
then

µA = r + βA (µmkt − r) and σA = βAσmkt + σε,

where µA and µmkt are the market expectations for return levels for the asset A and
the overall market, respectively, where σA and σmkt are the corresponding volatility
numbers, where βA is a constant dependent on the asset A, and where σε is the
volatility of the idiosyncratic component of the returns for asset A that is uncorrelated
with market returns. As usual, r denotes the risk-free rate. These equations combine
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to show that

σA =
1

Smkt

(µA − r) + σε,

where Smkt =
µmkt−r
σmkt

is the Sharpe ratio for market returns. Proposition 2, along with

the historic value of Smkt = 0.4 from Table 1, therefore imply that11

P (A, TNL) ≈ τA0 (µA − r)
√
t1 + τA0σε

√
t1. (10)

Thus, based on assumptions compatible with the CAPM, the burden of the TNL tax
over a one-year period is equal to a sum of two components, the first of which is
equal to τ times the market-expected return on A over the risk-free rate, and the
second of which grows with the idiosyncratic risk of A. For longer time periods, the
entire burden grows by a factor of the square root of the length of time. This finding
stands in sharp contrast to the well-known result from Section 4 that linear taxes
only burden the risk-free return to initial invested capital.

5.2 Portfolios of Multiple Assets

Because taxpayers often hold more than one asset simultaneously, it is desirable to
analyze the burden of TNL on portfolios containing multiple assets. In the simplest
case, a taxpayer may split his initial wealth between a risky asset, A, and the riskless
asset, B. Figure 2(a) illustrates how the tax burden depends on the initial allocation
choice in the case of a one-year investment in such a portfolio. The parameters for
the assets are those specified in Table 1, with A having the risk of the historic market
portfolio and with the risk-free rate equal to the historic average. The most notable
feature of Figure 2(a) is that although the burden of the TNL tax generally increases
with the size of the allocation to the risky asset, it does not do so linearly. Instead,
for a relatively small allocation of initial wealth to the risky asset, the burden is
nearly the same as it would be for an allocation entirely to the riskless asset. It is
only above a threshold of about a 15% investment in the risky asset that the burden
increases in a roughly linear fashion. This is a reflection of the fact that, for small
allocations of wealth to the risky asset, potential losses from the risky position are
generally outweighed by guaranteed gains in the riskless asset. As long as the net
change in value of the portfolio over time is positive, the non-linear tax TNL is the
same as its linear counterpart, TL, and this latter tax levies the same tax burden on
initial investment wealth, regardless of investment choice. Thus, the TNL tax does not
discourage all risk-taking in these simple portfolios, but only that risk-taking that is

11Note that the approximate equality Smkt

√
2π = 0.4

√
2π ≈ 1 is used to obtain the approximate

price formula.
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creates a significant probability for net portfolio losses. This principle is formulated
precisely in the following proposition.

Proposition 4. If there is a positive probability that At1 < A0, with respect to the

risk-neutral distribution for At1 , then the burden of the TNL tax on an investment in

A for time t1 is strictly greater than the burden of the corresponding linear tax. In

the alternative, if At1 ≥ A0 has probability 1, then the burdens of the two taxes are

identical.

If a taxpayer holds a portfolio of more than two risky assets, the situation is more
complex because there are several dimensions along which he may vary his portfolio
decision. The optimal choices, however, fall along a single-dimensional “efficient
frontier,” which is defined by the property that each portfolio on the frontier has the
highest possible expected return for its given level of risk. In the absence of taxes,
an investor would generally choose an optimal portfolio along this frontier, with the
particular choice dictated by his relevant utility function, assuming the utility function
depends only upon the risk and return of the portfolio. If the TNL tax is imposed,
however, the tax price will generally be higher for higher for portfolios with greater
risk, and so this tax tends to distort the optimal portfolio choice toward a lower risk
alternative. In contrast, if the TL tax were imposed, the selection of a portfolio would
of course be independent of the tax, since the TL tax is equivalent to a tax on initial
wealth, regardless of investment choices.

To get a sense of the types of distortion that may occur if the TNL tax is imposed
on the returns of a portfolio of several assets, it is useful to calculate a numerical
example. Consider three asset choices with expected returns and risks equal to the
historic values for the market portfolio, the “small minus big” (SMB) portfolio, and
the “high minus low” (HML) portfolio described on the website of Professor French.12

I label these assets A, ASMB, and AHML, and I compute annualized historic returns
and risks for ASMB and AHML based on monthly data from July 1926 to May 2011
in the same way I computed these values for A in Table 1. I also compute monthly
correlations between each pair of assets using the same historic data. The annualized
returns are 11.1%, 3.0%, and 4.7% for A, ASMB, and AHML, respectively, and the
corresponding annualized risks are 18.9%, 11.5%, and 12.4%. The correlation between
A and ASMB is 0.33, that between A and AHML is 0.23, and that between ASMB and
AHML is 0.10. Figure 2(b) shows the efficient frontier calculated using these parameter
values, and it highlights the portfolio with the maximum pre-tax return-to-risk ratio,
as well as the portfolio with the minimum pre-tax risk. The price of the TNL tax is
lowest for the latter portfolio, but the former will be preferred in the absence of taxes
by investors desiring to maximize their return-to-risk ratio.

The optimum choice for an investor is not necessarily the portfolio with the mini-
mum tax price. Nonetheless, an investor who would otherwise choose a higher reward-
to-risk ratio may satisfy himself with a somewhat lesser ratio in order to achieve a

12See footnote 10.
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(a) Risky and Risk-free Asset (b) Multiple Risky Assets

Figure 2: The figure on the left illustrates the price of the TNL tax in the case of a
portfolio that has a fraction of initial wealth invested in a risky asset with a volatility
of 18.9% and the remaining wealth invested in the riskless asset, with a guaranteed
return of 3.6%. The period of the investment is one year, and the tax rate on gains
is τ = 35%. The fraction of investment in the risky asset varies from 0% to 100%
along the horizontal axis, and the dashed horizontal lines represent the price of the
tax on an investment in exclusively one of the two possible assets. The figure on the
right illustrates the mean-variance efficient frontier for the three assets A, AHML and
ASMB described in the text. It labels the portfolio of minimum pre-tax risk on the
frontier, which is the portfolio for which the burden of the TNL tax is smallest. It also
labels the portfolio with the maximum pre-tax Sharpe ratio, for which the burden of
the TNL tax is significantly higher.

smaller tax burden, depending upon the relevant underlying utility function. To the
extent investors respond to imposition of the TNL tax in this way, portfolio allocation
decisions is altered, and optimal allocation of capital is not achieved. The statistics
summarized in Table 2, based on the numerical example involving A, ASMB, and
AHML, show that the degree to which allocations differ may be substantial.

5.3 Analysis of Put and Call Options

In addition to analyzing traditional assets, it is also informative to consider the burden
imposed by the TNL tax on derivative instruments, such as European put and call
options. Because these instruments represent leveraged positions implicitly, their
returns tend to have greater volatility, and this generally corresponds to a higher
price of the TNL tax, relative to the price for an investment in the underlying asset.

Figure 3(a) illustrates the price of the TNL tax for an investment exclusively in a
one-year call option, C(K). The asset, A, underlying the options is assumed to have
the historic risk of the market, and the risk-free rate is assumed to be the historic
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Portfolio with
Minimum Risk

Portfolio with Maximum
Reward-to-Risk Ratio

Tax Cost (% of Wealth) 1.9% 2.3%

Risk 8.8% 11.7%
Return 4.1% 7.5%
Reward-to-Risk Ratio 0.47 0.64

Fraction in A 0.05 0.48
Fraction in ASMB 0.51 0.13
Fraction in AHML 0.44 0.39

Table 2: Description of pre-tax minimum risk and maximum reward-to-risk ratio
portfolios

average, with both values as specified in Table 1. The strike price, K, of the call is
expressed as a percentage of initial asset value and varies along the horizontal axis
of the graph. To calculate the price of the tax, a taxpayer is assumed to choose a
value of K and invest his entire initial wealth in C(K). The price of the tax for a
one-year investment of this type is reported for a range of possible values of K. The
value of K varies along the horizontal axis and is expressed as a percentage of initial
asset value. The price of the tax is expressed along the vertical axis as a percentage
of initial wealth. Note that because C(K) is less expensive with increasing strike, the
investor is assumed to purchase a larger number of calls if he selects a higher value
of K for his strategy. Nonetheless, the total wealth invested is the same across all
taxpayer choices of K.

For low values of K, the payoff on C(K) is closer to that on the underlying risky
asset, and when K = 0, C(0) is identical to the underlying risky asset. Accordingly,
the price of the TNL tax for a portfolio of call options tends to the price of the TNL

tax for investment in the underlying asset as the strike price tends toward zero. On
the other hand, for high values of K, positive payoffs are rare, but generally large
when they occur, relative to initial cost of C(K). As a result, τ times the price of
C(K), which is the present value of the expected payoff, is close to the price of the
tax for an investment in C(K), which is τ times the present value of the expected
profit, defined as the expected payoff less the initial cost. Accordingly, the price of
the TNL tax for a portfolio of call options tends to a fraction τ of the initial wealth
as K grows large. Figure 3 illustrates these two extreme behaviors, with the price
tending toward P (A, TNL) as K → 0 and toward a fraction τ of initial wealth as
K → ∞. These tendencies do not depend upon the particular parameters used, and
Proposition 5 provides a theoretical generalization.

The case of a put option, P (K), is complementary to that for the corresponding
call, with the price of the TNL tax being greater for lower values of the strike, K,
rather than for higher ones. In addition, the price of the tax tends toward P (A, TNL)
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(a) Price of TNL Tax for Call Option (b) Price of TNL Tax for Put Option

Figure 3: The figure on the left shows the price of the TNL tax for a taxpayer who
invests entirely in call options on the risky asset, A, with strike price K. The value of
K varies along the horizontal axis and is expressed as a percentage of A0, the initial
value of A, and the vertical axis indicates the price of the TNL tax as a percentage of
initial wealth invested. For comparison, the two dashed lines show the price of the
TNL tax for a taxpayer investing in either just A or just the riskless asset B. The
figure on the right shows the analogous values for an investment in put options on A
with strike price K.

as K grows large, and toward a fraction τ of initial wealth as K tends to zero. The
intuition for each of these tendencies is analogous the corresponding results for call
options described above. Proposition 5 provides a theoretical generalization in this
case as well.

Proposition 5. If a taxpayer invests a fixed amount of initial wealth, W , in call

options with strike K, then the burden of the TNL tax on this investment increases

with K. At the extreme limits, it satisfies

lim
K→0+

P (C(K), TNL) = P (A, TNL) and lim
K→∞

P (C(K), TNL) = τW.

If the investor instead pursues the same strategy for European puts instead of European

calls, the tax burden under the TNL tax decreases with the strike price of the options,

and at the extreme limits, it satisfies

lim
K→0+

P (P (K), TNL) = τW and lim
K→∞

P (P (K), TNL) = P (A, TNL) .
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5.4 Put-Call Parity and Debt Financing

Debt financing for an asset can be thought of in terms of put and call options,13

and an analysis of the price of the TNL tax for appropriate option positions can thus
provide an indication of the burden imposed by the tax on the use of such financing.
The idea is to think of the equity owner as having a call option on the asset, with a
certain strike price, K, and to think of the debt owner as having a short put position
with respect to the asset, also with strike price K, as well as a position in the riskless
asset that has a final payment of K, including both principal and interest. The
combined positions of the debt owner constitute a “funded short put,” because the
position in the riskless asset provides a large enough guaranteed payment that the
combined position will never result in a negative aggregate final payment owed by
the debt owner. The combination of the equity position and the debt position results
in complete ownership of the asset so that the following relationship holds:

Put-Call Parity: Risky Asset = Call Option
︸ ︷︷ ︸

Equity

+Funded Short Put
︸ ︷︷ ︸

Debt

.

The burden of the TNL tax on debt financing may thus be thought of as the sum of
the price of the tax for the equity owner and the price for the debt owner, or

Burden of TNL Tax on Debt Financing = P (C(K), TNL) + P (FSP (K), TNL) , (11)

where C(K) is the call option, FSP (K) is the funded short put, and K is the common
strike price.

The burden of the TNL tax on call options is analyzed in Section 5.3, and for
funded short puts, sample calculations are illustrated in Figure 4(a). Because the
funded short put behaves much like the riskless asset for low strike values and much
like the underlying risky asset for high strike values, the tax price for a funded short
put tends toward the tax prices for the riskless and risky assets as the strike becomes
small or large, respectively. All of the calculations in Section 5.3, as well as those
underlying Figure 4(a) assume that a constant amount of wealth is invested, meaning
that more instruments were purchased when the value of a single instrument was low.
In order to combine these results to arrive at the aggregate burden described in (11),
it is necessary to rescale tax prices to reflect the fact that the initial wealth invested
by both the equity and debt owners is equal to the initial cost of their respective
positions. Figure 4(b) shows the result of the required rescaling and aggregation in
the case of a risky asset with historic market volatility and a risk-free rate equal to

13The approach to thinking of debt financing dates back to Merton (1974), but while that pa-
per specifically considers corporate debt, there is no assumption here that the debt be that of a
corporation.
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the historic average. For these parameters, it is appears that the burden of the TNL

tax on debt financing is generally greater than the tax burden on direct ownership of
the risky asset. That is to say, debt financing is penalized by the TNL tax.

(a) Funded Short Put (b) Divided Ownership Using Put-Call Parity

Figure 4: The figure on the left shows the price of the TNL tax for a one-year invest-
ment in a funded short put position. The figure on the right shows the aggregate
price of the TNL tax for two investors, one taking a funded short put position with
respect to the same underlying asset, and the other taking a long call position with
respect to the same asset and with the same strike price as the funded short put. All
options considered are on an underlying asset with a volatility of 18.9%, the risk-free
rate is assumed to be 3.6%, and the rate of tax on gains is τ = 35%. In both graphs,
the strike price varies along the horizontal axis and is expressed as a percentage of the
current value of the risky asset. Also, the dashed lines represent the price of the TNL

tax on an investment in either just the riskless asset or just the risky asset underlying
the options. The price of the tax in all cases is expressed as a percentage of total
initial wealth invested.

Figure 4(b) shows that debt financing can increase the burden of the TNL tax up
to 18.7% over the burden imposed on direct asset ownership. This highest amount
of increase for the parameters used occurs when the strike price is K = 96.7% of the
initial price of the underlying asset. For this strike price, the (pre-tax) cost of the
funded short put is 88.9% of the initial asset price and that of the call is 11.1% of
the initial asset price. The price of the TNL tax for the equity owner is 18.4% of the
(pre-tax) price of the call, and the price for the debt owner is 2.0% of the (pre-tax)
price of the funded short put. As a result, the aggregate burden to both investors is

88.9%× 2.0%
︸ ︷︷ ︸

Debt × Tax Price of Debt

+ 11.1%× 18.4%
︸ ︷︷ ︸

Equity × Tax Price of Equity

= 3.8%.
︸ ︷︷ ︸

Aggegate Tax Price
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This aggregate tax price is expressed as a percentage of initial asset value, and it is
18.7% higher than 3.2%, the price of the tax on an investment directly in the risky
asset. These calculations show that not only is the aggregate burden of the TNL tax on
investment increased when debt financing is used, but also that the burden is spread
unevenly across the two types of owners. In this example, the equity owners face a
tax price that is nearly six times higher than that for direct asset ownership, while
debt owners have a tax price that is less than that for direct asset ownership, but still
significantly higher than for ownership of pure debt, namely the riskless asset.

The pattern of behavior illustrated in Figure 4(b) holds true more generally for
other choices of parameters and for taxes other than just the TNL tax. Proposition 6
states this result precisely for a subadditive tax, which defined to be a tax T , such
that for any two incomes x and y, the following relationship holds:

Subadditivity : T (x+ y) ≤ T (x) + T (y). (12)

Proposition 6. Let A be a risky asset that has ownership divided between a debt

holder and an equity owner. If T is a subadditive tax, then the price of T for direct

ownership of A is less than or equal to the sum of the prices of the tax for the debt

owner and the equity owner. That is, debt financing has at least as high a tax price

as direct ownership. If T satisfies the reverse inequality of that in (12), then it is said

to be superadditive, and the tax burden associated with debt financing is less than or

equal the tax burden on direct ownership.

The following corollary provides an even stronger result in the particular case of
the TNL, rather than a generic subadditive tax.

Corollary 1. If the distribution of possible final values for the risky asset has support

throughout a neighborhood around the strike price K, then strict inequality holds in

the result of Proposition 6 in the case of the TNL tax. That is, the aggregate tax

burden is strictly higher for debt financing than the corresponding burden for direct

ownership.

It is possible that debt and equity owners may be subject to different rates of
tax, and perhaps even allowed loss offsets to differing degrees, and it is interesting to
analyze how such features affect the aggregate tax price for debt financing. Figure 5
illustrates the results of calculations that assume that the debt owner is taxed at a
rate of τD = 35% and that the equity owner is taxed a preferential rate of τE = 15%.
In addition, the calculations encompass both the situation in which loss offsets to the
debt owner are disallowed, and that in which deductions for losses to the debt owner
are permitted. The underlying risky asset has the historic volatility of the market, and
the risk-free rate is the historic average. The horizontal axes in the figure represent
the initial debt-equity ratio, measured as the ratio of the value of the debt to the
value of the equity at time t = 0. For the range of initial debt-equity ratios up to 10
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shown in Figure 5(a), there is a signficiant burden to debt financing beyond that for
simple ownership of the underlying asset, although the burden is somewhat reduced
for debt-equity ratios above 2 if the debt owner is permitted an offset for losses. For
some of the much higher ratios illustrated in Figure 5(b), debt financing is seen to
have a burden somewhat lower than direct asset ownership. For such high ratios,
however, it is likely that the debt would not be treated as such for tax purposes,
and both co-owners would actually receive equity treatment. In this case, the results
illustrated in Figure 4, in which all debt and equity is taxed at the same rate, provide
a more accurate description of what the relevant tax burden actually is.

(a) Debt/Equity Ratio Less than 10 (b) Wider Range of Debt/Equity Ratios

Figure 5: The figures show the aggregate price of tax for two taxpayers investing in
an asset for one year, with one taxpayer putting up the equity and the other providing
debt financing. Debt is taxed at the rate of τD = 35%, and equity is taxed at the
favorable rate of τE = 15%. No offset for losses is available for the equity investor,
but for the debt investor, both the situation in which loss offsets are allowed and
the situation in which they are not are illustrated. The underlying risky asset has a
volatility of 18.9%, and the risk-free rate is 3.6%. In both graphs, the initial debt-to-
equity ratio, computed on a pre-tax basis, varies along the horizontal axis. A wider
range of ratios is shown in the figure on the right. The aggregate price is expressed
as a percentage of aggregate initial investment value. The illustration assumes that
the “debt” is not recharacterized as equity for tax purposes even when leverage ratios
are very high.

It is notable that the relative positions of the burden of the TNL tax on the risky
asset and the riskless asset in Figure 5 are close. This is a result of the fact that the
riskless asset is assumed to be taxed at the τD = 35% rate for the debt owner and the
risky asset is assumed to be taxed at the τE = 15% rate for the equity holder. If the
relative rates changed, or if the period of investment were longer than the one-year
investment reflected in the figure, the relative sizes of the burdens may shift, and the
asset with the higher burden could from being the risky asset to the riskless asset.
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As a final comment about subadditivity and the penalty on division of ownership,
I note that the TNL tax would no longer be subadditive if it allowed a certain amount
of loss, up to a capped amount per taxpayer. An example of such a rule is the $3,000
limit on losses for individuals under IRC § 1211. In such a case, if ownership is divided
between two taxpayers and each has a loss, the aggregate limit of losses allowed for
tax purposes is double what it would be in there were only one owner, and this
can make division of ownership more advantageous. Figure 6 illustrates this general
phenomenon and highlights the range of possible incomes for two co-owners for which
divided ownership is actually preferable to exclusive ownership. The importance of
this type of deviation from subadditivity depends upon the magnitude of the potential
benefit relative to the size of the overall investment. If the cap on losses is small
relative to the overall investment, then the version of the TNL tax that allows a loss
has essentially the same properties as the usual TNL tax. It is possible, however, that
for some taxpayers and certain situations the difference may be important. In these
cases, the price of the modified TNL tax can be calculated to determine the burden or
benefit that comes from the tax rules when ownership is divided.

6 Extensions

It is possible to relax various assumptions underlying the model developed in Section
3. For example, it is straightforward to generalize to a setting in which consumption
and tax payments may occur at multiple discrete times, ore even continuously, rather
than requiring that all consumption of after-tax investment wealth occur at the end.
As long as the timing and amounts of consumption, as well as the applicable tax rules,
are all governed by deterministic functions of asset prices, the government’s right to
collect taxes over the course of the entire interval from t0 to t1 is simply a contingent
claim that makes payments with timing and size also given by a deterministic function
of asset prices. The price of such a claim can be calculated on a risk-neutral basis
using replicating portfolios in the same way as a claim with only one payment date,
provided that markets are sufficiently complete to allow the necessary replication. In
this case, the price of the tax is once again exactly the price of the corresponding
claim.

The removal of the restriction on the timing of consumption would be particularly
useful in analyzing how the realization requirement for tax gains and losses impacts
the price of a tax. For example, if a taxpayer followed a rule for taking losses whenever
possible and putting off gains until the end of a specified time horizon, the price of
the tax would generally be reduced. The extent to which deductions for losses are
permitted, as well as wash sale rules and other special tax code provisions, could be
factored into the analysis as well in order to develop an understanding of the true
price of the tax. For my methodology to apply, it is necessary for the taxpayer’s
behavior to be deterministic, given a evolution of stochastic asset prices, and given
the relevant tax rules. This is arguably the case, however, in many realistic situations,
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(a) No Loss Offsets (b) Loss Offsets up to $3,000

Figure 6: The figure on the left shows the regions in which the TNL tax burdens a
division of ownership. The horizontal and vertical axes represent possible income
outcomes for two investors who each own a portion of a single asset; together they
own the entire asset. If a pair of income outcomes is in the red area, the division of
ownership is more heavily burdened by the TNL tax than unified ownership by a single
taxpayer would be. If it is in the white area, there is no tax advantage or disadvantage
to division of ownership. The figure on the right shows the similar picture for a tax
that is proportionate except that it allows $3,000 of loss offsets. In this case, the red
and the white areas play the same role as in the figure on the left. There is now also
a green area, however, in which division of ownership is tax favored relative to unified
ownership.

and I plan to pursue this line of analysis in future work applying my framework.
The model can also be generalized to incorporate a number of other possibilities,

such as transaction costs, illiquid assets, and otherwise incomplete markets. Deter-
mining the price of a tax in such an extended model is still a problem that directly
parallels the pricing of a government-held contingent claim, and a price can be ascer-
tained to the extent that techniques from asset pricing theory provide a way to find
a price for the claim. If perfect replication of the contingent claim with portfolios
of assets in appropriate underlying securities remains possible, then an exact price
for the claim, and hence the tax, is available. In many cases of incomplete markets,
however, perfect replication may not be feasible. Even in these more challenging situ-
ations, it is still often possible at least to obtain upper and lower bounds for the price
of the claim, and hence the price of the tax. There are various estimation techniques
of this type, including, for example, the “good-deal bounds” described in Chapter 18
of Cochrane (2001), and depending upon the specific details involved, the estimates
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can provide a significant amount of information about the range in which the price
of the claim, and the tax, must fall.

7 Conclusion

The framework I have developed extends the general equilibrium techniques of Kaplow
(1991, 1994) to non-linear taxes by allowing trading and rebalancing of investment
portfolios between initial investment and final consumption of wealth. Asset pricing
theory applies directly and allows calculation of the price of the government’s contin-
gent tax claim with respect to a specified investment strategy for a taxpayer. This
price of the claim truly represents the “price” of the tax because imposing an up-front
lump-sum tax in this amount, along with appropriate dynamic investment portfolio
modifications, preserves a state of general equilibrium.

My methodology provides a robust set of tools for assessing critically the nature
of a tax system with non-linear imperfections. In an ideal setting, it is likely most
desirable to eliminate non-linearities, but such sweeping change may not be feasible.
As a second-best solution, however, some degree of incremental reform may be possi-
ble. My concept of the price of a tax provides a practical method for identifying the
areas most in need of this type of reform and also sheds light on the types of reforms
that will be most effective.

As an example, I applied my framework to analyze the particular case of the
non-linear TNL tax, which is linear for gains but does not allow any offset for losses.
This example is informative because it is not much more complicated than a linear
tax, but it significantly burdens assets in ways that linear taxes do not. In addition,
similar taxes are actually present in the current U.S. tax system. My findings included
the result that convex taxes, such as the TNL tax, generally burden the risk in risky
returns, but not the expected level of these returns. Accordingly, such taxes encourage
portfolio diversification targeted at risk minimization without regard to expected
returns, and this produces a distortion in investment allocation decisions. I also
found that the TNL tax imposes a particularly heavy burden on out-of-the-money call
and put options, because of the high degree of risk associated with such instruments.
In addition, I found that subadditive taxes, such as the TNL tax, generally penalize
synthetic division of risky asset ownership across taxpayers accomplished using put-
call parity or debt financing.

From the perspective of guiding tax policy reform, my findings tend to give pre-
liminary support to the ideas that it may be desirable to have lower tax rates for
taxpayers with relatively riskier portfolios and also to mitigate the aggregate tax bur-
den on assets with debt-financed or synthetically divided ownership. It is my hope
that more work using the price of a tax can be undertaken to gain further insights into
what reform choices would be most desirable in terms of both distributional fairness
and efficiency.
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A Appendix

A.1 Convexity and Subadditivity of the TNL Tax

Proposition A.1. The TNL tax defined in (7) is subadditive and convex, as those
concepts are defined in (8) and (12), respectively.

Proof. To see that subadditivity holds, it is easiest to consider four separate cases
depending upon the signs of x and y, namely

TNL(x+ y) ≤







0, if x < 0 and y < 0;

τ max(0, y), if x < 0 and y > 0;

τ max(0, x), if x > 0 and y < 0; and

τ(x+ y), if x > 0 and y > 0.

In each case, the expression on the right-hand side of the equation is exactly equal
to the sum of TNL(x) and TNL(y). Thus subadditivity follows, since TNL(x + y) ≤
TNL(x) + TNL(y).

To see that convexity holds, note first that TNL(αx) = αTNL(x) for any constant
α ≥ 0. As a result, the condition for convexity given in (8) is equivalent to

TNL(αx+ (1− α)y) ≤ TNL(αx) + TNL((1− α)y),

and this inequality holds because of the subadditivity of TNL.

A.2 Proof of Proposition 1

Let At and Bt be the prices of the risky and riskless assets, respectively, at time t,
and write ∆A = At1 −A0 and ∆B = Bt1 −B0 for the changes in value from the initial

time t = 0 to the end of the investment period at time t1. Also, write r = 1
t1
log

Bt1

B0

for the annual risk-free rate of return. The price of the tax T for the risky asset A
satisfies

P (A;T ) = e−rt1E [T (∆A)] ≥ e−rt1T (E [∆A]) = e−rt1T (∆B) = P (B;T ) , (A.1)

where the inequality follows from Jensen’s Inequality and the final equality is a result
of the fact that the expectation is taken with respect to the risk-neutral distribution
for returns on A, meaning that E [At1 ] = Bt1 .

The inequality for a concave function T is proved similarly. The fact the inequal-
ities are strict if T is strictly convex or concave, respectively, is also a result of the
usual result for Jensen’s Inequality, as well as the fact that a risky asset A does not
have constant returns.
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A.3 Proof of Proposition 2

An approximate expression for P (A, TNL) and an error term follow from the Taylor
expansions for N(x) and ex. In particular, direct computation shows that

N(x) =
1

2
+

(
1√
2π

)

x+RN (x), where |RN (x)| ≤
|x|3
2
√
2π

,

and that

ex = 1 +Re(x), where |Re(x)| ≤ |x|, provided x ≤ 0.

Since d =
(
σ
2
+ r

σ

)√
t1, it thus follows that

P (A, TNL) = τA0

(
N (d)−N

(
d− σ

√
t1
)
e−rt1

)
= τA0

(
1√
2π

)
(
σ
√
t1
)
+ E,

where

|E| ≤ τA0

(
8√
2π

)(

max (σ2/2, r)
3

σ3

)

t
3/2
1 + rt1.

It is straightforward to use this result to show that |E| ≤ 5τA0σ
2t1 when r ≤ σ2 and

σ2t1 ≤ 1, and this suffices to prove the proposition.

A.4 Proof of Proposition 3

The lower bound for P (A, TNL) follows from the fact that N (d) ≥ 1−N
(
d− σ

√
t1
)
,

since d > 0 and σ
√
t1 ≤ 2d. Plugging this inequality for N into (9) shows that

P (A, TNL) ≥ τA0

(
1−N

(
d− σ

√
t1
) (

1− e−rt1
))

,

and this is the desired lower bound. The upper bound for P (A, TNL) follows directly
from the fact that N(x) ≤ 1 for all x.

In the case of the riskless asset, the formula in (9) is no longer applicable, since it
requires a positive volatility. Instead, the price of the linear tax from (5) can be used,
since TNL and TL are the same for the riskless asset. This formula shows directly that

P (B, TNL) = τA0

(
1− e−rt1

)
,

and the desired lower and upper bounds both follow immediately from this equality.
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A.5 Proof of Proposition 4

It follows directly from the definition of the price of a tax in (3) and the definitions
of TL and TNL in (4) and (7) that

P (A, TNL) = P (A, TL) + τe−rt1E [max (0, A0 − At1)] .

If there is a positive probability that At1 < A0, then the second term on the right-
hand side of this equation is positive, and otherwise it is zero. This suffices to prove
the proposition.

A.6 Proof of Proposition 5

Let r be the risk-free rate of return, let Ct(K) be the price of a call option with strike
K at time t, and write W for the initial amount of wealth invested in call options
with strike K. The tax burden on this investment is

P (C(K), TNL) = e−r
E

[

TNL

(

W

(
C1(K)− C0(K)

C0(K)

))]

(A.2)

= τWe−r
E

[

max

(

0,
C1(K)− C0(K)

C0(K)

)]

= τWe−r
E

[

max

(

0,
max (0, A1 −K)− C0(K)

C0(K)

)]

,

= τWe−r
E

[

max

(

0,
A1 −K − C0(K)

C0(K)

)]

,

where the second line follows from the definition of TNL, the third line follows from the
definition of C1(K), and the final line follows from the fact that the argument of the
expectation operator in the third line is only positive in the range A1 > K + C0(K).

It is convenient to introduce notation for some relevant intervals, namely:

R1 = [K,K + C0(K)] , R2 = [K + C0(K),∞) , and R3 = R1 ∪ R2 = [K,∞) .

Also, let 1R be the characteristic function of an interval R, i.e., the function that
has the value 1 inside the interval and zero elsewhere. The derivative with respect to
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strike price of the tax burden on the call option investment is

∂P (C(K), TNL)

∂K
= −τWe−r

E

[

1R2

(
1

C0(K)
+

A1 −K

C2
0(K)/C ′

0(K)

)]

(A.3)

= −τWe−r

(−erC ′
0(K)− E [1R1

]

C0(K)
+

erC0(K)− E [1R1
(A1 −K)]

C2
0 (K)/C ′

0(K)

)

= τWe−r

(
C0(K)E [1R1

] + C ′
0(K)E [1R1

(A1 −K)]

C2
0(K)

)

≥ τWe−r

(
E [1R1

] (1 + C ′
0(K))

C0(K)

)

≥ 0.

The first line of (A.3) follows from direct computation of the derivative. The second
line of (A.3) makes use of the identities

C0(K) = e−r
E [1R3

(A1 −K)] and C ′
0(K) = −e−r

E [1R3
] . (A.4)

The third line of (A.3) is simply an algebraic rearrangement of the second line. The
fourth line of (A.3) makes use of the inequalities

E [1R1
(A1 −K)] ≤ C0(K)E [1R1

(A1 −K)] and |C ′
0(K)| = e−r

E [1R3
] ≤ 1,

with the first of these resulting from the fact that A1 −K ≤ C0(K) throughout the
interval R1 and the second of these resulting from the fact that r ≥ 0. As a result of
(A.3), it follows that the derivative is always non-negative, and so the tax burden is
increasing with K, as desired.

To find the limit of the tax burden on the call investment as K → ∞, note that

E

[

1R3

(
A1 −K

C0(K)

)]

− E

[

1R2

(
A1 −K − C0(K)

C0(K)

)]

= E

[

1R1

(
A1 −K

C0(K)

)]

+ E [1R2
]

≤ E [1R1
] + E [1R2

] → 0,

where the final limit limit is taken as K → ∞. This result and the expression for the
tax burden in the last line of (A.2) combine to show that

lim
K→∞

P (C(K), TNL) = τWe−r
E

[

1R3

(
A1 −K

C0(K)

)]

= τW,

where the last equality follows from the expression for C0(K) in (A.4). This is the
result claimed in the statement of the proposition.

At the other extreme, as K → 0+, C0(K) → A0, and so the final expression for
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P (C(K), TNL) in (A.2) shows that

lim
K→0+

P (C(K), TNL) = τWe−r
E

[

max

(

0,
A1 − A0

A0

)]

= P (A, TNL) ,

and this is simply the tax burden on an investment of an amount W in the risky
asset, as claimed in the proposition.

The results stated in the proposition for puts may be proven in a similar fashion
to those for calls.

A.7 Proofs of Proposition 6 and Corollary 1

Proof of Proposition 6. Let Dt and Et be the prices of the debt and equity positions
at time t, and let At = Dt + Et be the price of the asset at time t. Also, write

∆D = D1 −D0, ∆E = E1 − E0, and ∆A = A1 − A0

for the changes in value of each quantity from time t = 0 to time t = 1, and write r
for the risk-free rate of return. If T is subadditive, it follows that

P(T ;D) + P(T ;E) = e−rBE [T (∆D)] + e−rBE [T (∆E)] (A.5)

= e−rBE [T (∆D) + T (∆E)]

≥ e−rBE [T (∆D +∆E)]

= e−rBE [T (∆A)] = P(T ;A),

where the second line follows from the linearity of the expectation, the third line
follows from the subadditivity of T , and the fourth line follows from the definitions
of A, D and E.

If T is superadditive, the opposite inequality can be proven in a similar fashion.

Proof of Corollary 1. To obtain the result, it is necessary to analyze the behavior of
the signs of the quantities ∆D and ∆E introduced in the proof of Proposition 6 With
respect to debt, note that the fact that the distribution for A1 has support in the
region K < A1 implies that the value of D0 must be less than K, since it is simply the
present value of the expectation of min(K,A1). As a result, ∆D, when viewed as a
function of A1, monotonically increases and switches sign from negative to positive at
some value AD

1 < K. With respect to equity, the value of E0 must be positive, since
it is the present value of max(0, A1 −K) and A1 has support in the region A1 > K.
As a result, the function ∆E, when viewed as a function of A1, is also monotonically
increasing and switches sign from negative to positive at some value AE

1 > K.
From the foregoing results, it is clear that ∆D is positive and ∆E is negative

in the interval
[
AD

1 , A
E
1

]
, and that AD

1 < K < AE
1 . Because A1 has support in a

neighborhood of K, it thus follows that A1 has support in an interval in which ∆D
and ∆E have opposite signs. Throughout this interval, there is a strict inequality
TNL(∆D) + TNL(∆E) > TNL(∆D +∆E), and so there is strict inequality of expecta-
tions in (A.5) in the proof of Proposition 6. This proves the corollary.
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